The influence of intrauterine growth retardation on cardiac function, left ventricular mass and superior vena cava return in newborns

  • Anindita Soetadji Department of Child Health, Diponegoro Univetsity Medical School/Dr. Kariadi Hospital, Semarang, Central Java
  • Najib Advani Department of Child Health University of Indonesia Medical School/Dr. Cipto Mangunkusumo Hospital, Jakarta
  • Asril Aminullah Department of Child Health University of Indonesia Medical School/Dr. Cipto Mangunkusumo Hospital, Jakarta
  • Sudigdo Sastroasmoro Department of Child Health University of Indonesia Medical School/Dr. Cipto Mangunkusumo Hospital, Jakarta
Keywords: low birth weight, cardiac function, SVC return

Abstract

Background Low birth weight (LBW) in neonates is a problem leading to high morbidity and mortality. Barker hypothesized that fetal cardiac remodeling during hypoxic conditions or maternal underô€nutrition is a risk factor for coronary heart disease in the
young. Early vascular changes may influence cardiac function and newborns' cerebral blood flow.


Objective The aim of this study was to detennine the effects of being small for gestational age (SGA) on newborns' cardiac function, left ventricular (LV) mass and superior vena cava (SYC) return.


Methods This crossô€sectional study was conducted in Cipto Mangunkusumo Hospital from February to June 2008. LBW and nonnal newborns who fulfilled the inclusion criteria were recruited as subjects. Maternal history, infant physical examination, and echocardiography were obtained Mthin 48 hours oflife to exclude those with congenital heart disease, and assess cardiac function and SYC flow.

Results Subjects were 21 preterm appropriate for gestational age (AGA), 19 SGA and 19 normal newborns. SGA newborns showed lower LV mass, stroke volume and cardiac output than normal newborns. However, these SGA parameters were not different from preterm AGA babies. In additio n, LV mass index was sig nificantly different but no difference ofSVC return between the three groups.

Conclusion SGA newborns' LV function was lower than that of nonnal newborns, as low as pretenn AGA newborns. N onnal SVC return was observed in the three groups. This finding may be due to a brainô€sparing effect to maintain sufficient cerebral blood flow
in the fetus.

References

1. Damanik SM. Klasifikasi berat badan dan usia kehamilan. In: Kosim MS, Yunanto A, Dewi R, Sarosa GI, Usman A, editors. Buku Ajar Neonatologi. 1st ed. Jakarta: IDAI; 2008. p. 11·30.
2. Agusman IS. Retardasi pertumbuhan intrauterine dan gagal tumuh. In: Firmansyah A, Bisanto J, Nasar S, Dv.ipurwantoro PG, Oswari H, editors. Naskah lengkap pendidikan kedokteran berkelajutan IKA XLII. Dari kehidupan intrauterine sampai transplantasi organ, aktuaisasi gastroenterolgi􀁠hepatologi dan Gizi. Jakarta: FKUI; 1999. p. 114·23.
3. Stoll BJ, Kliegman RM. The high risk infant. In: Behnnan RE, Kliegman RM, Jenson HB, editors. Nelson textbook of pediatrics. 17th ed. Philadelphia: Saunders; 2004. p.S47-59.
4. Barker DJP. T he fetal origins of coronary heart disease. Hotline editorial. Eur Heart J. 1997; 18:883A.
5. Barker DJP. T he developmental origins of adult disease. J Am Coli Nutr. 2004;23.S588·95.
6. Artman M, Mahony L, Teitel DE Neonatal cardiology. New York. MacGraw.Hill; 2002. p.39.51.
7. Mahajan T, Chang AC. Heart failure in the neonate. In: Chang AC, TowbinJA, editors. Heart failure in children and young adults. From molecular mechanism to medical and surgical strategies. Philadelphia: Saunders Elsevier; 2006. p.376.87.
8. Sastroasmoro S. Pengaruh dobutamin terhadap faal kardiovaskular dan perjalanan klinis penyakit membran hialin [dissertation]. Jakarta: Universitas Indonesia; 1998.
9. Fineman JR, Heymann MA, Morin III FC. Fetal and postnatal circulation: Pulmonary and persistent pulmonary hypertension of the newborn. In: Allen HD, Clark EB, Gutgessel HP, Driscoll DJ, editors. Moss and Adam's heart disease in infants, children, and adolescents. 6th
ed. Philadelphia: Lippincott Williams and Wilkins; 2001. p.41-52.
10. Eriksson G, T homilento J, Osmond C, Barker DJP. Early growth and coronary heart disease in later life: longitudinal study. BMJ. 2001;322.949.53.
11. Eriksson J, Forsen T, Tuomilehto J, Osmond C, Barker D. Fetal and childhood growth and hypertension in adult life. Hypertension. 2000;3:790A.
12. Law CM, Egger P, Dada 0, Delgado H, Kylberg E, Lavin P, et al. Body size at birth and blood pressure among children in developing countries. Int J Epidemiol. 2000;29:S2-9.
13. Aprami TM, Irmalita. Risiko dislipidemia pada remaja dengan berat badan lahir rendah. J Kardiol Indones.2007; 28.1 24·32.
14. Cohen S. Fetal and childhood onset of adult cardiovascular diseases. Pediatr Clin N Am. 2004;5[;[69· 79.
15. Bowles NE, Vallejo JG, Vatta M. Heart failure and mechanisms of hypertrophy. In: Chang AC, TowbinJ, editors. Heart failure in children and young adults. From molecular mechanisms to medical and surgical strategies. Philadelphia: Saunders􀁠Elsevier; 2006. p.44-S9.
16. Groenenberg A, Wladimiroff JW, Hop W. Fetal cardiac and peripheral arterial flow velocity waveforms in intrauterine growth retardation. Circulation. 1989;80: 1711-7.
17. Epstein D, Wetzell RC. Cardiovascular physiology and shock. In: Nichols DG, Ungerleider RM, Spevak PJ, Greely WJ, Cameron DE, Lappe DG, et al., editors. Critical heart disease in infants and children. 2nd ed. Philadelphia: Mosby Elsevier; 2006. p.17·72.
18. Johnson GL, Moffett CB, Noonan JA. Doppler echo-cardiographic studies of diastolic ventricular filling patterns in premature infants. Am Heart J. 1988;116: lS68-74.
19. Park MK. Pediatric Cardiology for Practitioners. 5th ed. Philadelphia. Mosby Elsevier; 2008. p. 602.
20. Wulff C, Wilson H, Dickson SE, Wiegand SJ, Fraser HM. Hemochorial placentation in the primate: expression of vascular endothelial growth factor, angiopo ietins, and their receptors throughout pregnancy. Biol Reprod. 2002; 66;802-12.
21. Hanson MA, Gluckman PD. Developmental processes and the induction of cardiovascular function: conceptual aspects. Topical review. j Physiol. 2005;565,27-34.
22. Han HC, Austin KJ, Nathanielsz pw, Ford SF, Nijland MJ, Hansen T R. Maternal nutrient restriction alters gene expression in the o vine fetal heart. J Physiol. 2004;558.111-21.
23. Assessment of ventricular function. Methods for obtaining quantitative information from the echo cardiographic examination. In: Snider RA, Serwer GA, Ritter SB. Echocardiographyin pediatric heart disease. 2nd ed. Missouri: Mosby-Year Book; 1995. p.195-23.
24. Spevak PJ, Sena LM. Noninvasive diagnosis of congenital and acquired pediatric heart disease. In: Nichols DG, Ungerleider RM, Spevak PJ, Greely WJ, Cameron DE, Lappe DG, et al, editors. Critical heart disease in infants and children. 2nd ed. Philadelphia. Mosby Elsevier; 2006. p.438-9.
25. Pojda j, Kelley L, editors. ACCN/SCN (2000). Low birth weight: Report of a meeting in Dhaka, Bangladesh on 1-17 June 1999. Nutrition Policy Paper # 18. Geneva: ACC/SCN in collaboration with ICDDR; 2000. p.I-56.
26. Park MK. Pediatric cardiology for practitioners. 5th ed. Philadelphia. Mosby Elsevier; 2008. p. 91.
27. Mori A, Uchida N, Inomo A, Izumi S. Stiffness of systemic arteries in appropriate􀁏and small􀁏for􀁏gestational-age newborns infants. Pediatrics. 2006;118:1035A2.
28. Jiang B, Godfrey KM, Martyn CN, Gale CR. Birth weight and cardiac structure in children. Pediatrics. 2006;117.e257-61.
Published
2011-06-30
How to Cite
1.
Soetadji A, Advani N, Aminullah A, Sastroasmoro S. The influence of intrauterine growth retardation on cardiac function, left ventricular mass and superior vena cava return in newborns. PI [Internet]. 30Jun.2011 [cited 9May2024];51(3):170-. Available from: https://paediatricaindonesiana.org/index.php/paediatrica-indonesiana/article/view/720
Section
Articles
Received 2016-09-28
Accepted 2016-09-28
Published 2011-06-30