Detection of the jaundice-related G71R mutation in the UGT1A1 gene by denaturing high performance liquid chromatography (DHPLC)
Abstract
Background The G71R mutation in the UGT1A1 gene has beenassociated with neonatal jaundice and other cases of hereditary,
unconjugated hyperbilirubinemia in several Asian populations.
Currently, DNA sequencing is the only method available to
identify the mutation, which can be time- and labor-intensive,
particularly for such projects as population-based genetic studies.
A relatively new method, denaturing high performance liquid
chromatography (DHPLC), is increasingly used to detect various
mutations.
Objective The aim of the present study was to investigate the
ability of DHPLC to detect the G71R mutation, in comparison
with the gold standard of sequencing analysis.
Methods Seventy-two infants were enrolled. Following genomic
DNA extraction, exon 1 of the UGT1A1 gene was amplified by
polymerase chain reaction (PCR). Afterwards, the G71R mutation
was simultaneously, and blindly, determined in all subjects by
DHPLC and sequence analysis. The performance of the DHPLC
analysis, compared to the sequence analysis, was assessed in terms
of sensitivity and specificity.
Results DHPLC detected the G71 R mutation in 31 individuals.
Of these, 26 were heterozygous and 5 were homozygous for the
mutation. This method did not find the mutation in 41 other
individuals. Sequence analysis produced identical results for all
individuals.
Conclusion DHPLC analysis is capable of detecting the G71R
mutation in the UGT1A1 with a degree of sensitivity and
specificity (100% each) that is comparable to sequencing analysis.
References
bilirubin UDP-glucuronosyltransferase cDNAs with expression
in COS-1 cells. J Bioi Chem. 1991;266: 1043--47.
2. Bosma PJ, Seppen J, Goldhoorn B, Baker C, Oude Elferink
RPJ, Chowdhury JR. Bilirubin UDP-glucuronosyltransferase
1 is the only relevant bilirubin glucuronidating isoform in man. J Bioi Chern. 1994;269:17960-64.
3. Kadakol A, Ghosh SS, Sappal BS, Sharma G, Roy Chowdhury
J, Roy Chowdhury N. Genetic lesions of bilirubin uridine diphosphoglucuronate glucuronosyltransferase (UGT1A1) Causing Crigler-Najjar and Gilbert Syndromes: Correlation of genotype to phenotype. Hum Mutat. 2000;16:297-306.
4. Bosma PJ, Chowdhury JR, Bakker C, Gantla S, De Boer A, Oostra BA, et al. The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert's syndrome. N Eng!J Med. 1995;333:1171-75.
5. Sato H, Adachi Y, Koiwai 0. The genetic basis of Gilbert's
syndrome. Lancet. 1996;347:557-8.
6. Akaba K, Kimura T, Sasaki A, Tanabe S, lkegami T, Hashimoto M, et al. Neonatal hyperbilirubinemia and mutation of the bilirubin uridine diphosphate glucuronosyltransferase gene: a common missense mutation among Japanese, Koreans and Chinese. Biochem Mol Bioi Int. 1998;46:21-6.
7. Akaba K, Kimura T, Sasaki A, Tanabe S, Wakabayashi T, Hirai M, et al. Neonatal hyperbilirubinemia and a common mutation of the bilirubin-uridine-diphosphate-transferase gene in Japanese. J Hum Genet. 1999;44:22-5.
8. Maruo Y, Nishizawa K, Sato H, Doida Y, Shimada M.
Association of neonatal hyperbilirubinemia with bilirubin
UDP-glucuronyltransferase polymorphism. Pediatrics.
1999;103:1224-7.
9. Maruo Y, Nishizawa K, Sato H, Sawa H, Shimada M.
Prolonged unconjugated hyperbilirubinemia associated with breast milk and mutations of the bilirubin uridine diphosphate-glucuronosyltransferase gene. Pediatrics.
2000;106(5):e59.
10. Maruo Y, Sato H, Bamba N, lwai M, Sawa H, Fujino H, et al. Chemotherapy-induced unconjugated hyperbilirubinemia caused by a mutation of the bilirubin uridine-5-diphosphate gucuronosyl transferase gene. J Ped Hematol Oncol.
2001;23:45-7.
11. Yamamoto A, Nishio H, Waku S, Yokoyama N, Yonetani M, Uetani Y, et al. Gly71Arg mutation of the bilirubin UDPÂ glucuronosyl transferase 1A1 gene is associated with neonatal hyperbilirubinemia in the Japanese population. Kobe J Med. Sci. 2002;48:73-7.
12. Huang CS, Chang PF, Huang MJ, Chen ES, Chen CW.
Relationship between bilirubin UDP-glucuronosyl transferase
1A1 gene and neonatal hyperbilirubinemia. Pediatr Res.
2002;52:601-5.
13. Huang CS, Luo GA, Huang MJ, Yu SC, Yang SS. Variations of the bilirubin uridine-diphosphoglucuronosyl transferase 1A1 gene in healthy Taiwanese. Pharmacogenetics. 2000;10:539--44.
14. Hsieh SY, Wu YH, LinDY, Chu CM, Wu M, Liaw YF.
Correlation of mutational analysis to clinical feature in Taiwanese patients with Gilbert's sindrome. Am J Gastroenterol. 2001;96:1188-93.
15. Huang CS, Chang PF, Huang MJ, Chen ES, Chen CW.
Glucose-6-phosphate dehydrogenase deficiency, the UDP-glucuronosyl transferase 1A1 gene, and neonatal hyperbilirubinemia. Gastroenterology. 2002;123:127-33.
16. Strachan T, Read AP. Human Molecular Genetics. 2nd ed.
BIOS Scientific Publisher Ltd.1999. p.129-34.
17. Oefner PJ, Underhill PA. Comparative DNA sequencing by denaturing high performance liquid chromatography (DHPLC). Am J Hum Genet.1995;57:A226.
18. Xiao W, Oefner PJ. Denaturing High-Performance Liquid
Chromatography: A Review. Hum Mutat. 2001;7:439-74.
19. Sivakumaran TA, Kucheria K, Oefner PJ. Denaturing high performance liquid chromatography in the molecular diag nosis of genetic disorders. Curr Science. 2003;84:291-6.
20. Aono S, Adachi Y, Uyama E, Yamada Y, Keino H, Nanno T, et al. Analysis of genes for bilirubin UDPglucuronosyltransferase in Gilbert's syndrome. Lancet.1995;345:958-9.
21. Taylor P, Munson K, Gjerde D. Detection of mutation and
polymorphism on the WAVE® Nucleic Acid Fragment Analysis
System. Transgenomic Inc. 2000; Application note 101.
22. Schmitt TJ, Robinson ML, Doye J. Single nucleotide polymorphism (SNP), insertion & deletion detection on the WAVE® nucleic acid fragment analysis. Transgenomic lnc.2000; Application note 112.
23. Dawson B, Trapp RG. Basic and Clinical Biostatistics. 4'h ed. New York: Lange Medical Books/Me Graw Hilll, 2004; p. 118.
24. Fletcher RH, Fletcher SW, Wagner EH. Clinical epidemiology:
The essential. Jtd ed. Baltimore, Maryland: Williams &
Wilkins, 1996; p. 43-73.
25. Guyatt GH, Sackett DL, Haynes RB. Evaluating diagnostic test. In: Haynes RB, Sackett DL, Guyatt GH, Tugwell P, editors. Clinical Epodemiology: How to do clinical practice research. Jtd ed. Philadelphia: Williams & Wilkins, 2006; p. 273-320.
26. O'Donovan MC, Oefner PJ, Roberts SC, Austin J, Hoogen doorn B,Guy C, et al. Blind analysis of denaturing high performance liquid chromatography as a tool for mutation detection. Genomics. 1998;52:44-9.
27. Arnold N, GrossE, Schwarz-Boeger U, Pfisterer J, Jonat W, Kiechle M. A highly sensitive, fast and economical technique for mutation analysis in hereditary breast and ovarian cancers.
HumMutat. 1999;14:333-9.
28. GrossE, Arnold N, Goette J, Schwarz-Boeger U, Kiechle M. A
comparison of BRCAl mutation analysis by direct sequencing,
SSCP and DHPLC. Hum Genet. 1999;105:72-8.
29. Wagner TMU, Stoppa-Lyonnet D, Fleischmann E, Muhr
D, Pages S, Sandberg T, et al. Denaturing high performance
6 • Paediatr Indones, Vol. 49, No. 1, January 2009
liquid chromatography (DHPLC) detects reliably BRCAl
and BRCA2 mutations. Genomics. 1999;62:369-76.
30. Lin D, Goldstein JA, Mhatre AN, Lustig LR, Pfister M,
Lalwani AK. Assessment of denaturing high performance
liquid chromatography (DHPLC) in screening of mutation
in connexin 26 (GJB2). Hum Mutat. 2001;18:42-51.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Accepted 2016-09-05
Published 2009-03-01