TNF-? as a predictive factor of pulmonary hypertension in children with Down syndrome with and without congenital heart disease

  • Latifah Rahmi Hariyanti Departement of Child Health, Faculty of Medicine, Sebelas Maret University
  • Sri Lilijanti Widjaja Department of Child Health, Universitas Sebelas Maret Medical School/Dr. Moewardi Hospital, Surakarta, Central Java
  • Dwi Hidayah Department of Child Health, Universitas Sebelas Maret Medical School/Dr. Moewardi Hospital, Surakarta, Central Java
Keywords: Down syndrome; pulmonary hypertension; TNF-α


Background Down syndrome (DS) is a chromosomal disorder due to trisomy 21 that may involve congenital heart disease (CHD). Pulmonary hypertension (PH) may be present in DS with and without CHD. TNF-α is a cytokine involved in the pathogenesis of inflammation in PH.

Objective To determine the association between TNF-α and the risk of PH in children with DS with and without congenital heart disease.

Methods This observational study was conducted in DS children aged two months to five years who visited the outpatient clinic of a regional referral hospital in Indonesia. Subjects underwent echocardiography and were classified into four groups (CHD-PH, CHD-no PH, no CHD-PH, no CHD-no PH). Serum TNF-α was measured in all subjects. We used the ANOVA test to compare mean TNF-α between the groups and to determine the optimal TNF-α cut-off point. We compared the risk of PH in subjects with TNF-α above and below the cut-off point.

 Results We included 36 DS children in this study. Mean TNF-α in the CHD-PH, CHD-no PH, no CHD-PH, and no CHD-no PH groups was 2,564.44 (SD 177.00) pg/mL, 2,112.89 (SD 382.00) pg/mL, 2,211.56 (SD 330.70) pg/mL, and 1,118.89 (SD 1056.65) pg/mL, respectively (p<0.001). The optimal TNF-α cut-off point was 2,318 pg/mL. DS children with TNF-α ≥2,318 pg/mL had a higher risk of CHD (RR=2.6; 95%CI 1.17 to 5.78; p=0.008) and PH (RR=3.5; 95%CI 1.43 to 8.60; p=0.001).

Conclusions DS children with CHD accompanied by PH have significantly higher TNF-α levels than those without PH and those without CHD. In children with DS, an elevated TNF-α level (≥2,318 pg/mL) is associated with a higher risk of CHD and PH.


1. King P, Tulloh R. Management of pulmonary hypertension and Down syndrome. Int J Clin Pract Suppl. 2011;174:8-13. DOI: 10.1111/j.1742-1241.2011.02823.x.
2. Beghetti M, Rudzinski A, Zhang M. Efficacy and safety of oral sildenafil in children with Down syndrome and pulmonary hypertension. BMC Cardiovasc Disord. 2017;17:177. DOI: 10.1186/s12872-017-0569-3.
3. Weerackody RP, Welsh DJ, Wadsworth RM, Peacock AJ. Inhibition of p38 MAPK reverses hypoxia-induced pulmonary artery endothelial dysfunction. Am J Physiol Heart Circ Physiol. 2009;296:1312-21. DOI:10.1152/ajpheart.00977.2008.
4. Hartopo AB, Anggrahini DW, Emoto N, Dinarti LK. The BMPR2, ALK1 and ENG genes mutation in congenital heart disease- associated pulmonary artery hypertension. Acta Cardiol Indones. 2019;5:145-9. DOI: 10.22146/aci.50222.
5. Morrell NW, Bloch DB, ten Dijke P, Goumans MJ, Hata A, Smith J, et al. Targeting BMP signalling in cardiovascular disease and anaemia. Nat Rev Cardiol. 2016;13:106-20. DOI:10.1038/nrcardio.2015.156.
6. Liu D, Liu QQ, Guan LH, Jiang X, Zhou DX, Beghetti M, et al. BMPR2 mutation is a potential predisposing genetic risk factor for congenital heart disease associated pulmonary vascular disease. Int J Cardiol. 2016;211:132-6. DOI: 10.1016/j.ijcard.2016.02.150.
7. Délot EC, Bahamonde ME, Zhao M, Lyons KM. BMP signaling is required for septation of the outflow tract of the mammalian heart. Development. 2003;130:209-20. DOI: 10.1242/dev.00181.
8. Andruska A, Spiekerkoetter E. Consequences of BMPR2 deficiency in the pulmonary vasculature and beyond: contributions to pulmonary arterial hypertension. Int J Mol Sci. 2018;19:2499. DOI: 10.3390/ijms19092499.
9. Wei M, Han B, Liu F, Wang L, Sun J. A novel mutation in BMPR2 in patients with congenital heart disease and pulmonary arterial hypertension. Clin Exp Cardiolog. 2012;3:3-6. DOI: 10.4172/2155-9880.1000181.
10. Idris NS. Hipertensi pulmonal. In: Sudigdo S, Djer MM, editors. Buku ajar kardiologi anak. 2nd ed. Jakarta: Badan Penerbit Ikatan Dokter Anak Indonesia; 2020. p. 452-63.
11. Najib A, editors. Hipertensi pulmonal pada anak. Proceeding of the 2nd Jakarta pediatric respiratory forum: comprehensive approach to better respiratory health in children. 2016 July 9-11. Jakarta.
12. Suzuki H, Hanawa H, Torigoe T, Sato S. Improvement of pulmonary arterial hypertension following medication and shunt closure in a BMPR2 mutation carrier with atrial septal defect. J Cardiol Cases. 2017;16:11-3. DOI:10.1016/j.jccase.2017.03.005.
13. Evans JDW, Girerd B, Montani D, Wang XJ, Galie N, Austin ED, et al. BMPR2 mutations and survival in pulmonary arterial hypertension: an individual participant data meta-analysis. Lancet Respir Med. 2016;4:129-37. DOI: 10.1016/S2213-2600(15)00544-5.
14. Hurst LA, Dunmore BJ, Long L, Crosby A, Lamki RA, et al. TNF- ? drives pulmonary arterial hypertension by suppresing the BMP type II receptor and altering NOTCH signalling. Nature Communications. 2017;8:14079. DOI: 10.1038/ncommos14079.
15. Banjar HH. Pulmonary hypertension (PHT) in patients with Down syndrome: the experience in a tertiary care center in Saudi Arabia. J Pulmonar Respirat Med. 2012;2:1-5. DOI: 10.4172/2161-105X.1000115.
16. Benhaourech S, Drighil A, Hammiri AE. Congenital heart disease and Down syndrome: various aspects of a confirmed association. Cardiovasc J Afr. 2016;27:287-90. DOI: 10.5830/CVJA-2016-019.
17. Ontoseno T. Hubungan sebab dan akibat, status gizi pada anak dengan penyakit jantung. In: Ontoseno T, editor. Penyakit jantung pada anak. 1st ed. Jakarta: Penerbit Sagung Seto; 2018. p.218.
18. Batte A, Lwabi P, Lubega S, Kiguli S, Otwombe K, Chimoyi L, et al. Wasting, underweight and stunting among children with congenital heart disease presenting at Mulago hospital, Uganda. BMC Pediatr. 2017;17:10. DOI: 10.1186/s12887-017-0779-y.
19. Hariyanto D. Profil penyakit jantung bawaan di instalasi rawat inap anak RSUP Dr. M. Djamil Padang Januari 2008-Februari 2011. Sari Pediatri. 2012;14:152-7. DOI: 10.14238/sp14.3.2012.152-7.
20. Hallioglu O, Alehan D, Kandemir N. Plasma leptin levels in children with cyanotic and acyanotic congenital heart disease and correlations with growth parameters. Int J Cardiol. 2003;92:93-7. DOI: 10.1016/s0167-5273(03)00044-5.
21. Rahayuningsih SE. Hubungan antara defek septum ventrikel dan status gizi. Sari Pediatri. 2011;13:137-41. DOI: 10.14238/sp13.2.2011.137-41.
22. Mourato FA, Villachan LR, da Silva Mattos S. Prevalence and profile of congenital heart disease and pulmonary hypertension in Down syndrome in a pediatric cardiology service. Rev Paul Pediatr. 2014;32:159-63. DOI: 10.1590/0103-0582201432218913.
23. Kylhammar D, Hesselstrand R, Nielsen S, Scheele C, Radegran G. angiogenic and inflammatory biomarkers for screening and follow up in patient with pulmonary arterial hypertension. Scand J Rheumatol. 2018;01:1-6. DOI: 10.1080/03009742.2017.1378714.
24. Noori NM, Moghaddam MN, Teimouri A, Shahramian I, Keyvani B. Evaluation of serum level of tumor necrosis factor-alpha and interleukin-6 in patients with congenital heart disease. Niger Med J. 2016;57:233-7. DOI: 10.4103/0300-1652.188353.
How to Cite
Hariyanti L, Widjaja S, Hidayah D. TNF-? as a predictive factor of pulmonary hypertension in children with Down syndrome with and without congenital heart disease. PI [Internet]. 21Feb.2022 [cited 16Jun.2024];62(1):61-. Available from:
Pediatric Cardiology
Received 2021-05-05
Accepted 2022-02-21
Published 2022-02-21