Time period after transcatheter PDA closure with changes in left ventricular function and nutritional status

Main Article Content

Muhammad Irfan
Muhammad Ali
Tina Christina Lumban Tobing
Wisman Dalimunthe
Rizky Adriansyah

Abstract

Background Few studies perform follow ups on patent ductus arteriosus (PDA) patients who undergo transcatheter closure. In addition to side effects from the procedure, it is important to evaluate changes in left ventricular function (LVF) parameters and nutritional status.


Objective To compare LVF and nutritional status before and during the one-year period post-transcatheter PDA closure, and evaluate potential associated factors in post-closure PDA transcatheter patients.


Methods This retrospective cohort study was done in a single center in patients diagnosed with PDA who had undergone transcatheter closure. Data were obtained from subjects’ medical records. The relationship between the post-closure PDA time span and LVF parameters [ejection fraction (EF) and fractional shortening (FS)] was analyzed by Friedman and repeated ANOVA tests; the post-closure PDA time period and nutritional status was analyzed by Friedman test. The time periods analyzed were 1, 3, 6, and 12 months post-closure. Factors potentially associated with LVF 12 months post-closure were analyzed by linear regression.


Results A total of 30 patients who had undergone transcatheter PDA closure were included. The body weight mean of at the time of transcatheter PDA closure was 13.1 kg. We found a significant relationship between time period after PDA closure and nutritional status, before and 1, 3, 6, and at 12 months post-closure. In a comparison of pre-closure to 12 months post-closure, subjects’ mean EF (66.6 vs. 70.9%, respectively; P<0.001) and FS (34.4 vs. 37.8%, respectively; P<0.001) were significantly higher. In addition, significantly more patients had normal nutritional status 12 months post-closure than before closure. Age was not related to LVF parameters (EF: r=0.212; P=0.260; FS: r=0.137; P=0.471).


Conclusion Both LVF and nutritional status significantly improve gradually over the 12 months post-closure compared to pre-closure. PDA size is not significantly associated with improved LVF parameters and nutritional status.

Article Details

How to Cite
1.
Irfan M, Ali M, Lumban Tobing T, Dalimunthe W, Adriansyah R. Time period after transcatheter PDA closure with changes in left ventricular function and nutritional status. PI [Internet]. 16Mar.2021 [cited 15Jun.2021];61(2):100-. Available from: https://paediatricaindonesiana.org/index.php/paediatrica-indonesiana/article/view/2462
Section
Pediatric Cardiology
Received 2020-08-05
Accepted 2021-03-16
Published 2021-03-16

References

1. McCrindle BW. Prevalence of congenital cardiac disease. In: Anderson RH, Baker EJ, Penny D, Redington AN, Rigby ML, Wernovsky G, editors. Pediatric cardiology. 3 ed. Philadelphia: Elsevier; 2010. p. 143.
2. Fahed AC, Gelb BD, Seidman JG, Seidman CE. Genetics of congenital heart disease: the glass half empty. Circ Res. 2013;112(4):707-20. DOI: 10.1161/CIRCRESAHA.112.300853.
3. Van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;58(21):2241-7. DOI: 10.1016/j.jacc.2011.08.025
4. Hariyanto D. Profil penyakit jantung bawaan di instalasi rawat inap anak RSUP Dr. M. Djamil Padang Januari 2008 – Februari 2011. Sari Pediatri. 2012;14(3):6. DOI: 10.14238/sp14.3.2012.152-7.
5. Maramis PP, Kaunang ED, Rompis J. Hubungan penyakit jantung bawaan dengan status gizi pada anak di rsup Prof. Dr. R. D. Kandou Manado tahun 2009-2013. e-CliniC. 2014(Vol 2, No 2 (2014): Jurnal e-CliniC (eCl)):1-8. DOI: 10.35790/ecl.2.2.2014.5050.
6. Johnson W, Moller J. Classification and physiology of congenital heart disease in children. In: Johnson W, Moller J, editors. Pediatric cardiology: the essential pocket guide. 3 ed. Chennai: John Wiley & Sons; 2014. p. 87.
7. Perloff J, Marelli A. Patent ductus arteriosus. In: Perloff J, Marelli A, editors. Perloff's clinical recognition of congenital heart disease. 6 ed. Philadelphia: Elsevier; 2012. p. 368-93.
8. Djer MM, Saputro DD, Putra ST, Idris NS. Transcatheter closure of patent ductus arteriosus: 11 years of clinical experience in Cipto Mangunkusumo Hospital, Jakarta, Indonesia. Pediatr Cardiol. 2015;36(5):1070-4. DOI: 10.1007/s00246-015-1128-2.
9. Djer MM, Idris NS, Angelina. Transcatheter closure of tubular type patent ductus arteriosus using amplatzer ductal occluder II: a case report. Paediatr Indones. 2013;53(5):291-4. DOI: 10.14238/pi53.5.2013.11.
10. Kuswiyanto RB, Firman A, Rayani P, Rahayuningsih SE. Luaran penutupan duktus arteriosus persisten transkateter di Rumah Sakit Dr. Hasan Sadikin Bandung. MKB. 2016;48(4):234-40. DOI: 10.15395/mkb.v48n4.915.
11. Agha HM, Hamza HS, Kotby A, Ganzoury MEL, Soliman N. Predictors of transient left ventricular dysfunction following transcatheter patent ductus arteriosus closure in pediatric age. J Saudi Heart Assoc. 2017;29(4):244-51. DOI: 10.1016/j.jsha.2017.02.002.
12. Elsheikh RG, Hegab MS, Salama MM. Echocardiograpic evaluation of short-term outcome of patent ductus arteriosus closure using amplatzer occluder device. J Cardiovasc Dis Diagn. 2015;03(05). DOI: 10.4172/2329-9517.1000220.
13. Korejo HB, Shaikh AS, Sohail A, Chohan NK, Kumari V, Asif Khan M, et al. Predictors for left ventricular systolic dysfunction and its outcome after patent ductus arteriosus (PDA) closure by device. Int J Cardiovasc Res. 2018;07(01). DOI: 10.4172/2324-8602.1000341.
14. Hartaty D, Noormanto N, Haksari EL. Pertambahan berat badan pascapenutupan patent duktus arteriosus secara transkateter. Sari Pediatri. 2016;17(3):180-4. DOI: 10.14238/sp17.3.2015.180-4.
15. UKK Nutrisi dan Penyakit Metabolik. Asuhan nutrisi pediatrik. In: Sjarif D, Nasar S, Davaera Y, Tanjung C, editors. Asuhan nutrisi pediatrik. 1 ed. Jakarta: IDAI; 2011. p. 5.
16. Djer MM, Mochammading, Said M. Transcatheter vs. surgical closure of patent ductus arteriosus: outcomes and cost analysis. Paediatr Indones. 2013;53(4). DOI: 10.14238/pi53.4.2013.239-44.
17. Wang K, Pan X, Tang Q, Pang Y. Catheterization therapy vs surgical closure in pediatric patients with patent ductus arteriosus: a meta-analysis. Clin Cardiol. 2014;37(3):188-94. DOI: 10.1002/clc.22238.
18. Liu Y, Chen S, Zuhlke L, Black GC, Choy MK, Li N, et al. Global birth prevalence of congenital heart defects 1970-2017: updated systematic review and meta-analysis of 260 studies. Int J Epidemiol. 2019;48(2):455-63. DOI: 10.1093/ije/dyz009.
19. Ismail MT, Hidayati F, Krisdinarti L, Noormanto, Nugroho S, Wahab AS. Epidemiological profile of congenital heart disease in a national referral hospital. ACI. 2015;1(2):66-71. DOI: 10.22146/ACI.17811..
20. Eisa RA, Babiker MS. Prevalence of VSD, PDA, and ASD in Saudi Arabia by echocardiography: a prospective study. J Diagn Med Sonogr. 2019;35(4):282-8. DOI: 10.1177/8756479319840650
21. Bernstein D. Patent ductus arteriosus. In: Kliegman RM, Stanton BF, St Geme JW, Schor NF, Behrman RE, editors. Nelson textbook of pediatrics. 20 ed. Philadelphia: Elsevier; 2016. p. 2197-8.
22. Gillam-Krakauer M, Reese J. Diagnosis and management of patent ductus arteriosus. Neoreviews. 2018;19(7):e394-e402. DOI: 10.1542/neo.19-7-e394.
23. Sasi A, Deorari A. Patent ductus arteriosus in preterm infants. Indian Pediatr. 2011;48(4):301-8. DOI: 10.1007/s13312-011-0062-5.
24. Rashid U, Qureshi AU, Hyder SN, Sadiq M. Pattern of congenital heart disease in a developing country tertiary care center: factors associated with delayed diagnosis. Ann Pediatr Cardiol. 2016;9(3):210-5. DOI: 10.4103/0974-2069.189125.
25. Parra-Bravo R, Cruz-Ramírez A, Rebolledo-Pineda V, Robles-Cervantes J, Chávez-Fernández A, Beirana-Palencia L, et al. Transcatheter closure of patent ductus arteriosus using the amplatzer duct occluder in infants under 1 year of age. Rev Esp Cardiol. 2009;62(8):867-74. DOI: 10.1016/s1885-5857(09)72651-9.
26. Ali S, El Sisi A. Transcatheter closure of patent ductus arteriosus in children weighing 10 kg or less: Initial experience at Sohag University Hospital. J Saudi Heart Assoc. 2016;28(2):95-100. DOI: 10.1016/j.jsha.2015.06.007.
27. Kamal N, Salih A, Othman N. Incidence and types of congenital heart diseases among children in sulaimani governorate. Kurd J Appl Res. 2017;2(2):106-11. DOI: 10.24017/science.2017.2.15.
28. Tripathi A, Black GB, Park YM, Jerrell JM. Prevalence and management of patent ductus arteriosus in a pediatric medicaid cohort. Clin Cardiol. 2013;36(9):502-6. DOI: 10.1002/clc.22150.
29. Al-Hamash SM, Wahab HA, Khalid ZH, Nasser IV. Transcatheter closure of patent ductus arteriosus using ado device: retrospective study of 149 patients. Heart Views. 2012;13(1):1-6. DOI: 10.4103/1995-705X.96658.
30. Jang GY, Son CS, Lee JW, Lee JY, Kim SJ. Complications after transcatheter closure of patent ductus arteriosus. J Korean Med Sci. 2007;22(3):484-90. DOI: 10.3346/jkms.2007.22.3.484.
31. Eerola A, Jokinen E, Boldt T, Pihkala J. The influence of percutaneous closure of patent ductus arteriosus on left ventricular size and function: a prospective study using two- and three-dimensional echocardiography and measurements of serum natriuretic peptides. J Am Coll Cardiol. 2006;47(5):1060-6. DOI: 10.1016/j.jacc.2005.09.067.
32. Hassan AM, Attia HM, A.E. El Din D. Immediate and short-term changes in left ventricular function in children undergoing percutaneous closure of patent ductus arteriosus by echocardiography and tissue doppler. Egypt J Hosp Med. 2018;72(3):4085-92. DOI: 10.21608/ejhm.2018.9121.
33. Arodiwe I, Chinawa J, Ujunwa F, Adiele D, Ukoha M, Obidike E. Nutritional status of congenital heart disease (CHD) patients: Burden and determinant of malnutrition at university of Nigeria teaching hospital Ituku - Ozalla, Enugu. Pak J Med Sci. 2015;31(5):1140-5. DOI: 10.12669/pjms.315.6837.
34. Tabib A, Aryafar M, Ghadrdoost B. Prevalence of malnutrition in children with congenital heart disease. J Compr Pediatr. 2019;10(4):e84274. DOI: 10.5812/compreped.84274.
35. Park MK, Salamat M. Left-to-right shunt lesions. In: Park MK, editor. Park's the pediatric cardiology handbook. 5 ed. Philadelphia: Elsevier; 2016. p. 108-11.
36. Inrianto W, Nugroho S, Mulatsih S, Murni IK. Prognostic factor of heart failure in children with left-to-right shunt acyanotic congenital heart disease. Paediatr Indones. 2019;59(2):63-6. DOI: 10.14238/pi59.2.2019.63-6.
37. Hassan BA, Albanna EA, Morsy SM, Siam AG, Al Shafie MM, Elsaadany HF, et al. Nutritional status in children with un-operated congenital heart disease: an egyptian center experience. Front Pediatr. 2015;3:53. DOI: 10.21608/ejhm.2018.9121.
38. Hou M, Qian W, Wang B, Zhou W, Zhang J, Ding Y, et al. Echocardiographic prediction of left ventricular dysfunction after transcatheter patent ductus arteriosus closure in children. Front Pediatr. 2019;7(409):1-6. DOI: 10.3389/fped.2019.00409.
39. Chuang ML, Gona P, Hautvast G, Salton CJ, Breeuwer M, O'Donnell CJ, et al. Association of age with left ventricular volumes, ejection fraction and concentricity: the Framingham heart study. J Cardiovasc Magn Reson. 2013;15(S1). DOI: 10.1186/1532-429x-15-s1-p264.