Predictor factors of pulmonary hypertension in children with left-to-right shunting in acyanotic congenital heart disease
Abstract
Background Left-to-right shunting in acyanotic congenital heart disease (CHD) is the most common type of defect in childhood heart disease. Limited access to specialist health services causes delays in CHD management. In limited resource settings, identification of factors that influence the occurrence of pulmonary hypertension is important in order to decide which patients should be prioritized for defect closure to prevent further complications.
Objective To determine predictive factors of pulmonary hypertension after a left-to-right shunt CHD diagnosis.
Methods This retrospective cohort study included children aged 1 month to 17 years with isolated atrial septal defect, or ventricular septal defect, or patent ductus arteriosus. Potential predictors studied were iron deficiency anemia, mitral regurgitation, pneumonia, and heart failure. Bivariate analysis was done with Chi-square test and multivariate analysis was done with Cox regression to determine the hazard ratio.
Results Pulmonary hypertension occurred in 68 of 176 subjects. Iron deficiency anemia, mitral regurgitation, and pneumonia were not predictives of pulmonary hypertension. However, heart failure was a significant predictive factor for pulmonary hypertension, with a hazard ratio of 4.1 (95%CI 2.2 to 7.5; P=0.001).
Conclusions Heart failure is a predictive factor of pulmonary hypertension in children with left-to-right shunting in acyanotic CHD.
References
2. Frank DB, Hanna BD. Pulmonary arterial hypertension associated with congenital heart disease and Eisenmenger syndrome: current practice in pediatrics. Minerva Pediatr. 2015;67:169-85. PMC: 4382100.
3. Adatia I, Kothari SS, Feinstein JA. Pulmonary hypertension associated with congenital heart disease: pulmonary vascular disease: the global perspective. Chest. 2010;137:52–61. DOI: 10.1378/chest.09-2861.
4. Bardi-Peti L, Ciofu EP. Pulmonary hypertension during acute respiratory diseases in infants. Mædica. 2010;5:13–9. PMC: 3150087.
5. Dimopoulos K, Wort SJ, Gatzoulis MA. Pulmonary hypertension related to congenital heart disease: a call for action. Eur Heart J. 2014;35:691–700. DOI: 10.1093/eurheartj/eht437.
6. Pan X, Zheng Z, Hu S, Li S, Wei Y, Zhang Y, et al. Mechanisms of pulmonary hypertension related to ventricular septal defect in congenital heart disease. Ann Thorac Surg. 2011;92:2215–20. DOI: 10.1016/j.athoracsur.2011.07.051
7. Rahayuningsih SE. Hubungan antara hipertensi pulmonal pada defek septum atrium sekundum dan mutasi gen. Sari Pediatr. 2009;11:113–7. DOI: 10.14238/sp11.2.2009.113-7
8. Rhodes C, Howard L, Busbridge M, Ashby D, Kondili E, Gibbs J, et al. Iron deficiency and raised hepcidin in idiopathic pulmonary arterial hypertension: clinical prevalence, outcomes, and mechanistic insights. J Am Coll Cardiol. 2011;58:300-9. DOI: 10.1016/j.jacc.2011.02.057.
9. Barua C, Barua SK, Hossain MZ, Karim T. Pulmonary hypertension in children with congenital left to right cardiac shunt anomalies. Chattagram Maa-O-Shishu Hosp Med Coll J. 2015;14:31-7. DOI: 10.3329/cmoshmcj.v14i2.25714.
10. Peduzzi P, Concato J, Feinstein AR, Holford TR. Importance of events per independent variable in proportional hazards regression analysis II. Accuracy and precision of regression estimates. J Clin Epidemiol. 1995;48:1503–10. DOI: 10.1016/0895-4356(95)00048-8.
11. Concato J, Peduzzi P, Holford TR, Feinstein AR. Importance of events per independent variable in proportional hazards analysis I. Background, goals, and general strategy. J Clin Epidemiol. 1995;48:1495–501. DOI: 10.1016/0895-4356(95)00510-2.
12. Parasuraman S, Walker S, Loudon BL, Gollop ND, Wilson AM, Lowery C, et al. Assessment of pulmonary artery pressure by echocardiography-A comprehensive review. IJC Hear Vasc. 2016;12:45–51. DOI: 10.1016/j.ijcha.2016.05.011
13. Ozdemir N. Iron deficiency anemia from diagnosis to treatment in children. Turk Pediatr Ars. 2015;50:11–9. DOI: 10.5152/tpa.2015.2337
14. WHO. Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. World Health Organization. 2011. Available from: http://www.who.int/vmnis/indicators/haemoglobin.pdf
15. Wu AC, Lesperance L, Bernstein H. Screening for iron deficiency. Pediatr Rev. 2002;23:171–8. DOI: 10.1542/pir.23-5-171
16. Ross RD. The Ross classification for heart failure in children after 25 years: A review and an age-stratified revision. Pediatr Cardiol. 2012;33:1295–300. DOI: 10.1007/s00246-012-0306-8
17. Ismail MT, Hidayati F, Krisdinarti L, Noormanto, Nugroho S, Wahab AS. Epidemiological profile of congenital heart disease in a national referral hospital. Acta Cardiol Indones. 2015;1:66–71. DOI: 10.22146/aci.17811.
18. Mulder BJM. Changing demographics of pulmonary arterial hypertension in congenital heart disease. Eur Respir Rev. 2010;19:308–13. DOI: 10.1183/09059180.00007910.
19. Badan Penelitian dan Pengembangan Kesehatan. Riset kesehatan dasar (RISKESDAS) 2013. Ris Kesehat Dasar 2013. Kementerian Kesehatan Republik Indonesia 2013.
20. Soon E, Treacy CM, Toshner MR, MacKenzie-Ross R, Manglam V, Busbridge M, et al. Unexplained iron deficiency in idiopathic and heritable pulmonary arterial hypertension. Thorax. 2011;66:326–32. DOI: 10.1136/thx.2010.147272
21. Sutendra G, Bonnet S. The iron paradigm of pulmonary arterial hypertension: Popeye knows best. Circ Res. 2015;116:1636–8. DOI: 10.1161/circresaha.115.306440.
22. Ruiter G, Lankhorst S, Boonstra A, Postmus PE, Zweegman S, Westerhof N, et al. Iron deficiency is common in idiopathic pulmonary arterial hypertension. Eur Respir J. 2011;37:1386–91. DOI: 10.1183/09031936.00100510
23. Plesner LL, Schoos MM, Dalsgaard M, Goetze JP, Kjøller E, Vestbo J, et al. Iron deficiency in COPD associates with increased pulmonary artery pressure estimated by echocardiography. Heart Lung Circ. 2017;26:101–4. DOI: 10.1016/j.hlc.2016.04.020.
24. Cotroneo E, Ashek Ac, Wang L, Wharton J, Dubois O, Bozorgi S, et al. Iron homeostasis and pulmonary hypertension: iron deficiency leads to pulmonary vascular remodeling in the rat. Circ Res. 2015;116:1680–90. DOI: 10.1161/circresaha.116.305265.
25. Patel H, Desai M, Tuzcu EM, Griffin B, Kapadia S. Pulmonary hypertension in mitral regurgitation. J Am Heart Assoc. 2014;3:1–9. DOI: 10.1161/jaha.113.000748.
26. Guzmán MC, Izquierdo LM, Carvajal D, Duque B, Rodriguez-Martinez MC. Clinical outcomes of pulmonary hypertension in children with pneumonia and respiratory failure. J Resp Dis. 2017;1:107.
27. Abman SH, Hansmann G, Archer SL, Ivy DD, Adatia I, Chung WK, et al. Pediatric pulmonary hypertension: guidelines from the American Heart Association and American Thoracic Society. Circulation. 2015;132:2037–99. DOI: 10.1161/CIR.0000000000000329.
28. Maxwell AJ, Bridges ND. Pediatric primary pulmonary hypertension. Curr Treat Options Cardiovasc Med. 2001;3:371–83. DOI: 10.1007/s11936-001-0027-4.
29. Hansmann G. Pulmonary hypertension in infants, children, and young adults. J Am Coll Cardiol. 2017;69:2551–69. DOI: 10.1016/j.jacc.2017.03.575.
30. Kozlik-Feldmann R, Hansmann G, Bonnet D, Schranz D, Apitz C, Michel-Behnke I. Pulmonary hypertension in children with congenital heart disease (PAH-CHD, PPHVD-CHD). Expert consensus statement on the diagnosis and treatment of paediatric pulmonary hypertension. The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and DGPK. Heart. 2016;102:ii42–8. DOI: 10.1136/heartjnl-2015-308378.
31. Murni IK, Djer MM, Yanuarso PB, Putra ST, Advani N, Rachmat J, et al. Outcome of pediatric cardiac surgery and predictors of major complication in a developing country. Ann Pediatr Cardiol. 2019;12:38–44. DOI: 10.4103/apc.APC_146_17
32. Murni IK, Musa NL. The need for specialized pediatric cardiac critical care training program in limited resource settings. Front Pediatr. 2018;6:59. DOI: 10.3389/fped.2018.00059.
Copyright (c) 2021 Indah Kartika Murni, Ida Safitri, Weny Inrianto
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Accepted 2021-05-18
Published 2021-05-18