Association between low-grade chronic inflammation with adipocytokines and body fat mass in superobese male children

  • Aryono Hendarto Department of Child Health, University of Indonesia Medical School/Dr. Cipto Mangunkusumo, Jakarta
  • Sudigdo Sastroasmoro Department of Child Health, Universitas Indonesia Medical School/Dr. Cipto Mangunkusumo Hospital, Jakarta
  • Damayanti Rusli Sjarif Department of Child Health, Universitas Indonesia Medical School/Dr. Cipto Mangunkusumo Hospital, Jakarta
Keywords: hsCRP; adipocytokines; body fat mass; superobese; children


Background Obesity causes adipocytokines dysregulation and enhances the pro-inflammatory response. Low-grade chronic inflammation is related to cardiometabolic diseases.

Objective To evaluate the status of low-grade chronic inflammation in pre-pubertal, obese boys and its potential correlation to adipocytokines and body fat mass.

Methods This cross-sectional study included pre-pubertal, male, superobese children as the subjects. We determined obesity status using the CDC 2000 BMI-for-age chart. Body fat percentage was measured using bioelectric impedance analysis (BIA). Fasting blood specimens were collected to evaluate hsCRP, leptin, adiponectin, and TNF-α levels.

Results Eighty subjects were recruited into this study, with a mean age of 6.9 years. Ten subjects (12.5%) had low-grade chronic inflammation (hsCRP level ≥ 1 mg/L). The levels of hsCRP was not correlated with leptin, adiponectin, and TNF-α levels. A weak, but significant correlation was observed between hsCRP level and body fat mass (r= +0.383; P<0.0001). The hsCRP level increased with increasing body fat mass, until it reached its peak at body fat mass of 28 kg. Beyond that point, hsCRP level was stable.

Conclusion Low-grade chronic inflammation begins at a young age in obese children. The hsCRP level has a weak correlation with body fat mass, but no correlation with adipocytokine levels. Prevention and treatment of childhood obesity should be prioritized to prevent further cardiovascular and metabolic diseases.


Musaiger AO. Overweight and obesity in Eastern Mediterranean region: prevalence and possible causes. J Obes. 2011;2011:407237. PMid:21941635 PMCid:PMC3175401

Salehiniya H, Yazdani K, Barekati H, Asadi Lari M. The prevalence of overweight and obesity in children under 5 years in Tehran, Iran, in 2012: a population-based study. Res Cardiovasc Med. 2016;5:e30425. PMid:26889459 PMCid:PMC4752595

Balitbang Kemenkes RI. Riset Kesehatan Dasar (RISKESDAS) 2013. Jakarta: Kemenkes RI; 2013. p.259.

Monteiro R, Azevedo I. Chronic inflammation in obesity and the metabolic syndrome. Mediators Inflamm. 2010;2010:289645. PMid:20706689 PMCid:PMC2913796

Engin A. Adipose tissue hypoxia in obesity and its impact on preadipocytes and macrophages: hypoxia hypothesis. Adv Exp Med Biol. 2017;960:305-26. PMid:28585205

Iikuni N, Lam QLK, Lu L, Matarese G, Cava AL. Leptin and inflammation. Curr Immunol Rev. 2008;4:70-9. PMid:20198122 PMCid:PMC2829991

Procaccini C, De Rosa V, Galgani M, Carbone F, La Rocca C, Formisano L, et al. Role of adipokines signaling in the modulation of T cells function. Front Immunol. 2013;4:332. PMid:24151494 PMCid:PMC3799205

de Rooij SR, Nijpels G, Nilsson PM, Nolan JJ, Gabriel R, Bobbioni-Harsch E, et al. Low-grade chronic inflammation in the relationship between insulin sensitivity and cardiovascular disease (RISC) population: associations with insulin resistance and cardiometabolic risk profile. Diabetes Care. 2009;32:1295-301. PMid:19366964 PMCid:PMC2699728

Seo HS. The role and clinical significance of high-sensitivity C-reactive protein in cardiovascular disease. Korean Circ J. 2012;42:151-3. PMid:22493609 PMCid:PMC3318086

Parizkova J, Hills A. Childhood obesity prevention and treatment. 2nd ed. Florida: CRC Press; 2005. p.28.

Guran O, Akalin F, Ayabakan C, Dereli FY, Haklar G. High-sensitivity C-reactive protein in children at risk for coronary artery disease. Acta Paediatr. 2007;96:1214-9. PMid:17655623

Divella R, De Luca R, Abbate I, Naglieri E, Daniele A. Obesity and cancer: the role of adipose tissue and adipo-cytokines-induced chronic inflammation. J Cancer. 2016;7:2346-59. PMid:27994674 PMCid:PMC5166547

Zhao D, Liu H. Adipose tissue dysfunction and the pathogenesis of metabolic syndrome. World J Hypertens. 2013;3:18-26.

Kamath DY, Xavier D, Sigamani A, Pais P. High sensitivity C-reactive protein (hsCRP) & cardiovascular disease: an Indian perspective. Indian J Med Res. 2015;142:261-8. PMid:26458341 PMCid:PMC4669860

Wang A, Liu J, Li C, Gao J, Li X, Chen S, et al. Cumulative exposure to high-sensitivity C-reactive protein predicts the risk of cardiovascular disease. J Am Heart Assoc. 2017;6:e005610. PMid:29066453 PMCid:PMC5721824

Cozlea DL, Farcas DM, Nagy A, Keresztesi AA, Tifrea R, Cozlea L, et al. The impact of C reactive protein on global cardiovascular risk on patients with coronary artery disease. Curr Health Sci J. 2013;39:225-31. PMid:24778862 PMCid:PMC3945266

Shrivastava AK, Singh HV, Raizada A, Singh SK. C-reactive protein, inflammation and coronary heart disease. Egypt Heart J. 2015;67:89-97.

Ekmen N, Helvaci A, Gunaldi M, Sasani H, Yildirmak ST. Leptin as an important link between obesity and cardiovascular risk factors in men with acute myocardial infarction. Indian Heart J. 2016;68:132-7. PMid:27133319 PMCid:PMC4867951

Lam QL, Zheng BJ, Jin DY, Cao X, Lu L. Leptin induces CD40 expression through the activation of Akt in murine dendritic cells. J Biol Chem. 2007;282:27587-97. PMid:17660512

Francisco V, Pino J, Campos-Cabaleiro V, Ruiz-Fernandez C, Mera A, Gonzalez-Gay MA, et al. Obesity, fat mass and immune system: role for leptin. Front Physiol. 2018;9:640. PMid:29910742 PMCid:PMC5992476

Nakahara K, Okame R, Katayama T, Miyazato M, Kangawa K, Murakami N. Nutritional and environmental factors affecting plasma ghrelin and leptin levels in rats. J Endocrinol. 2010;207:95-103. PMid:20631048

Sertoglu E. Importance of factors affecting serum leptin levels. World J Surg. 2015;39:1587-8. PMid:25561198

Brydon L. Adiposity, leptin and stress reactivity in humans. Biol Psychol. 2011;86:114-20. PMid:20193730 PMCid:PMC3042594

Ouchi N, Walsh K. Adiponectin as an anti-inflammatory factor. Clin Chim Acta. 2007;380:24-30. PMid:17343838 PMCid:PMC2755046

Butte NF, Comuzzie AG, Cai G, Cole SA, Mehta NR, Bacino CA. Genetic and environmental factors influencing fasting serum adiponectin in Hispanic children. J Clin Endocrinol Metab. 2005;90:4170-6. PMid:15827100

Kotani K, Sakarie N, Saiga K, Kato M, Ishida K, Kato Y, et al. Serum adiponectin levels and lifestyle factors in Japanese men. Heart Vessels. 2007;22:291-6. PMid:17879019

Tzanavari T, Giannogonas P, Karalis KP. TNF-alpha and obesity. Curr Dir Autoimmun. 2010;11:145-56. PMid:20173393

Page MJ, Bester J, Pretorius E. The inflammatory effects of TNF-α and complement component 3 on coagulation. Sci Rep. 2018;8:1812. PMid:29379088 PMCid:PMC5789054

Indulekha K, Surendar J, Mohan V. High sensitivity C-reactive protein, tumor necrosis factor-α, interleukin-6, and vascular cell adhesion molecule-1 levels in Asian Indians with metabolic syndrome and insulin resistance (CURES-105). J Diabetes Sci Technol. 2011;5:982-8. PMid:21880241 PMCid:PMC3192605

Gokulakrishnan K, Deepa R, Mohan V. Association of high sensitivity C-reactive protein (hsCRP) and tumour necrosis factor-alpha (TNF-alpha) with carotid intimal medial thickness in subjects with different grades of glucose intolerance--the Chennai Urban Rural Epidemiology Study (CURES-31). Clin Biochem. 2008;41:480-5. PMid:18328265

Tangvarasittichai S, Pongthaisong S, Tangvarasittichai O. Tumor necrosis factor-Α, interleukin-6, C-reactive protein levels and insulin resistance associated with type 2 diabetes in abdominal obesity women. Indian J Clin Biochem. 2016;31:68-74. PMid:26855490 PMCid:PMC4731374

Castoldi G, Galimberti S, Riva C, Papagna R, Querci F, Casati M, et al. Association between serum values of C-reactive protein and cytokine production in whole blood of patients with type 2 diabetes. Clin Sci (Lond). 2007;113:103-8. PMid:17362204

Fuentes E, Fuentes F, Vilahur G, Badimon L, Palomo I. Mechanisms of chronic state of inflammation as mediators that link obese adipose tissue and metabolic syndrome. Mediators Inflamm. 2013;2013:136584. PMid:23843680 PMCid:PMC3697419

How to Cite
Hendarto A, Sastroasmoro S, Sjarif D. Association between low-grade chronic inflammation with adipocytokines and body fat mass in superobese male children. PI [Internet]. 18Feb.2019 [cited 13Jul.2024];59(1):13-. Available from:
Pediatric Nutrition & Metabolic Disease
Received 2018-12-27
Accepted 2019-02-18
Published 2019-02-18